

1. INTRODUCCIÓN

FÓRMULAS QUÍMICAS

Las fórmulas químicas se emplean para representar una sustancia química y nos indica los átomos que la forman y la proporción de estos átomos en dicha sustancia.

Ej.: H₂O Compuesta por 2 átomos de H y 1 de O.

NOMENCLATURA

Sirve para nombrar los compuestos químicos a partir de la fórmula química, empleando para ello una serie de normas incluidas en la I.U.P.A.C.

¿POR QUÉ SE UNEN LOS ÁTOMOS?

Porque consiguen más estabilidad.

¿CÓMO SE COMBINAN LOS ÁTOMOS EN UN COMPUESTO?

Los compuestos son eléctricamente neutros, excepto los iones, luego la suma de la carga que aporten cada uno de los átomos a un compuesto tiene que ser nula, es decir, debemos tener en un compuesto tantas cargas positivas como negativas.

Pero para saber cuál es la carga que aporta cada átomo vamos a emplear un concepto muy útil que se llama número de oxidación ó número de valencia.

¿QUÉ ES EL NÚMERO DE OXIDACIÓN?

El número de oxidación es un número entero que representa el número de electrones que un átomo pone en juego, cuando forma un compuesto.

- El número de oxidación es **positivo** si el átomo pierde electrones.
- El número de oxidación es **negativo** si el átomo gana electrones.

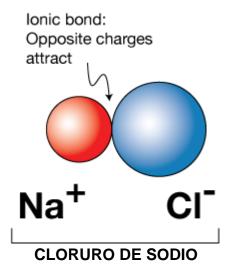
Cuando escribamos el **número de oxidación** de un elemento químico lo haremos poniendo **delante** del mismo el signo **+ ó -**. (Ej.: +2 para el Ca).

Cuando escribamos la carga eléctrica de un ión lo haremos poniendo **detrás** del mismo el signo $+ \acute{o} - (Ej.: Ca^{2+})$

¿Será tan complicado saber cuál es el número de oxidación que le corresponde a cada átomo? Pues no, basta con conocer el número de oxidación de los elementos que tienen un único número de oxidación, que son muchos.

Estos números de oxidación aparecen en la tabla siguiente. Los números de oxidación de los demás elementos los deduciremos de las fórmulas o nos los indicarán en el nombre del compuesto, así de fácil.

	GRUPO	1		GRUP	2			GR	UPO	O 13	
	Electro+	Electro-		Electro+	Elec	tro-			ctro+	Elec	tro-
Н	+1	-1	Ве	+2	-		В	-	+3	-3	
Li	+1	-	Mg	+2	-		ΑI	4	- 3	_	
Na	+1	-	Ca	+2	-		Ga	4	- 3	-	
K	+1	-	Sr	+2	-		In	+	- 3	-	
Rb	+1	-	Ba	+2	-		TI	+	- 3	-	
Cs	+1	-	Ra	+2	-						
Fr	+1	-									
	GRUPO '	14		GRUPC	15			GR	UPO	D 16	
	Electro+	Electro-		Electro+	Elec	tro-		Elec	ctro+	Elec	tro-
С	+2 +4	-4	N	+3 +5	-3	3	0		-	-2, -1	
				(+1 +2)							
Si	+2 +4	-4	Р	+3 +5	-3		S	+2 +	+4 +6		
Ge	+2 +4	-	As	+3 +5	-3	}	Se	+2 +	-4 +6		
Sn	+2 +4	-	Sb	+3 +5	-3	3	Te	+2 +	-4 +6	-2) -
Pb	+2 +4	-	Bi	+3 +5	-3	3	Ро	+2 +	+4 +6	-2)
	GRUPO '	17	Α	LGUNOS	ELEN	IEN ⁻	TOSI	DE T	RAN	SICIÓN	1
	Electro+	Electro-		Electro+		Ele	ctro+		Е	lectro-	-
F	-	-1	Fe	+2 +3	Cu	+1	+2	Р	t	+2 +4	1
CI	+1 +3 +5 +7	-1	Со	+2 +3	Hg	+1	+2	Р	d	+2 +4	1
Br	+1 +3 +5 +7	-1	Ni	+2 +3	Ag	+1		N	1n +	-2 +3	+4
									+	-6 +7	
1	+1 +3 +5 +7	-1	Zn	+2	Au	+1	+3				



A 4	4 0 5 7	4	0 1	^	0	0 0 0	
I At	+1 +3 +5 +7	-1	(:d	+ン	(:r	1 +2 +3 +6	
/ \	11101011		Ou	· <u>~</u>	01	12 10 10	

¿CÓMO ESCRIBIMOS LAS FÓRMULAS Y LA NOMENCLATURA?

• En las Fórmulas: el elemento que se escribe a la izquierda, es el que tiene número de oxidación positivo y a la derecha se escribe el que tiene el número de oxidación negativo. Estas posiciones coinciden, en general, con la localización que tienen estos elementos en la tabla periódica, los que tienen un número de oxidación positivo están a la izquierda y los que tienen un número de oxidación negativo están hacia a la derecha.

 En la Nomenclatura: Se nombra primero el elemento que escribimos a la derecha en la fórmula y después el elemento que se escribe a la izquierda. Si un elemento tiene varios números de oxidación nos lo van a indicar en el nombre, en la nomenclatura de Stock, como se verá luego, o se usará la nomenclatura estequiométrica en la que no se usan los números de oxidación.

A continuación veremos punto por punto los distintos tipos de sustancias inorgánicas que existen y como se formulan y nombran.

2. SUSTANCIAS SIMPLES

Llamamos sustancias simples a las que están constituidas por átomos de un sólo elemento.

En general se nombran con el nombre del elemento constituyente, y su fórmula será el símbolo del elemento (Fe, Na, Cu, C, etc), excepto las siguientes moléculas gaseosas (H₂, N₂, O₂, O₃) y las de los halógenos (F₂, Cl₂, Br₂, I₂) que se presentan en forma diatómica o triatómica, y se nombran según la IUPAC con los prefijos di- o tri-, aunque es frecuente que aparezcan sin prefijos. Los átomos de estas moléculas cuando aparecen aislados llevan el prefijo mono-.

Los prefijos que designan el número de átomos son:

1	2	3	4	5	6	7	8	9	10
mono-	di-	tri-	tetra-	penta-	hexa-	hepta-	octa-	nona-	deca-

	Nombre sistemático	Nombre común		Nombre sistemático	Nombre común
H ₂	Dihidrógeno	Hidrógeno	F ₂	Diflúor	Flúor
N ₂	Dinitrógeno	Nitrógeno	Cl ₂	Dicloro	Cloro
O ₂	Dioxígeno	Oxígeno	Br ₂	Dibromo	Bromo
О3	Trioxígeno	Ozono	l ₂	Diyodo	Yodo
Н	Monohidrógeno	Hidrógeno atómico	F	Monoflúor	Flúor atómico
N	Mononitrógeno	Nitrógeno atómico	CI	Monocloro	Cloro atómico
0	Monooxígeno	Oxígeno atómico	I	Monoyodo	Yodo atómico
P ₄	Tetrafósforo	Fósforo blanco	S ₈	Octaazufre	
S ₆	Hexaazufre		Sn	Poliazufre	
Fe	Hierro		С	Carbono	
Na	Sodio		Ag	Plata	

K	Potasio	Sb	b	Antimonio	
Hg	Mercurio	Sn	n	Estaño	

1. IONES

Aunque no son sustancias simples pues aparecen siempre asociados a otros iones podemos nombrar los iones más sencillos que luego nos encontraremos en otros compuestos.

Los iones son átomos o agregados de átomos con carga eléctrica, positiva en el caso de los cationes y negativa en el caso de los aniones.

Cationes monoatómicos: El símbolo del elemento se acompaña de un superíndice con el valor de la carga seguido del signo más. Eⁿ⁺

- a) Sistema de Stock: Se nombran con la palabra catión y el nombre del elemento seguido del número de oxidación sin el signo entre paréntesis y en números romanos.
- **b)** Sistema de Ewens-Bassett: Se nombran con la palabra ion y el nombre del elemento seguido del número de carga, con el signo más, entre paréntesis.

En elementos con número de oxidación fijo el número de oxidación y el número de carga no hace falta indicarlos como se ve en los nombres comunes.

Catión	Nombre de Stock	Nombre de Ewens- Bassett	Nombre común
K ⁺	Catión potasio(I)	Ion potasio(1+)	lon potasio
Na+	Catión sodio(I)	Ion sodio(1+)	lon sodio
Mg ²⁺	Catión magnesio(II)	Ion magnesio(2+)	Ion magnesio
Ca ²⁺	Catión calcio(II)	lon calcio(2+)	lon calcio
Al ³⁺	Catión aluminio(III)	Ion aluminio(3+)	lon aluminio
Fe ²⁺	Catión	Ion hierro(2+)	

	hierro(II)		
Fe ³⁺	Catión hierro(III)	Ion hierro(3+)	
Cu ²⁺	Catión cobre(II)	Ion cobre(2+)	
Cu+	Catión cobre(I)	Ion cobre(1+)	
Ag+	Catión plata(I)	Ion plata(1+)	lon plata
Au ³⁺	Catión oro(III)	Ion oro(3+)	
Zn ²⁺	Catión cinc(II)	Ion cinc(2+)	Ion cinc
Cd ²⁺	Catión cadmio(II)	Ion cadmio(2+)	Ion cadmio
H ⁺		Ion hidrógeno(1+)	Hidrón

Cationes homopoliatómicos: Se sigue el sistema de Ewens-Bassett con un prefijo que nos indique el número de átomos.

Catión	Nombre de Ewens- Bassett		
O ₂ +	Ion dioxígeno(1+)		
H ₃ +	Ion trihidrógeno(1+)		
S4 ²⁺	Ion tetraazufre(2+)		
Hg ₂ ²⁺	Ion dimercurio(2+)		

Cationes heteropoliatómicos:

Catión	Nombre de Sustitución	Nombre Tradicional
NH ₄ ⁺	Azanio	Amonio
H ₃ O ⁺	Oxidanio	Oxonio

Aniones monoatómicos: El símbolo del elemento se acompaña de un superíndice con el valor de la carga seguido del signo menos. **E**ⁿ⁻

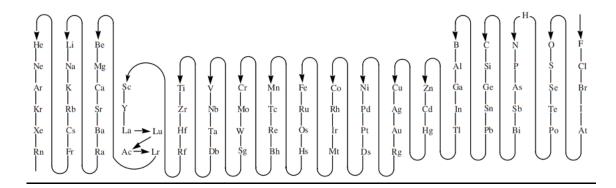
Sistema de Ewens-Bassett: Se nombran con la palabra ion y el nombre del elemento terminado en -uro seguido del número de carga, con el signo menos, entre paréntesis. Para el O^{2-} se reserva la palabra óxido.

En elementos con número de oxidación negativo fijo el número de carga no hace falta indicarlo como se ve en los nombres comunes.

Anión	Nombre de Ewens- Bassett	Nombre común
H-	lon hidruro(1–)	lon hidruro
B ³⁻	Ion boruro(3–)	lon boruro
C ⁴⁻	lon carburo(4–)	lon carburo
Si ⁴⁻	Ion siliciuro(4–)	Ion siliciuro
N ³⁻	Ion nitruro(3–)	Ion nitruro
P ³⁻	Ion fosfuro(3–)	Ion fosfuro
As ³⁻	Ion arseniuro(3–)	Ion arseniuro
O ²⁻	lon óxido(2–)	lon óxido
S ²⁻	Ion sulfuro(2–)	Ion sulfuro
Se ²⁻	Ion seleniuro(2–)	Ion seleniuro
Te ²⁻	Ion telururo(2–)	Ion telururo
F-	Ion fluoruro(1–)	Ion fluoruro
CI-	Ion cloruro(1–)	lon cloruro
Br-	Ion bromuro(1–)	Ion bromuro
 -	lon yoduro(1–)	lon yoduro

Aniones homopoliatómicos: Se sigue el sistema de Ewens-Bassett con un prefijo que nos indique el número de átomos.

	Bassett	
O ₂ -	lon dióxido(1–)	Ion superóxido
O ₂ ²⁻	lon dióxido(2–)	lon peróxido
O ₃ -	Ion trióxido(1–)	lon ozónido
S ₂ ²⁻	Ion disulfuro(2–)	
N ₃ -	Ion trinitruro(1–)	Ion azida
C ₂ ²⁻	Ion dicarburo(2–)	Ion acetiluro
I ₃ -	Ion triyoduro(1–)	


2. COMPUESTOS BINARIOS

Son combinaciones binarias entre un metal y un no metal o bien son combinaciones de dos no metales, distintos del oxígeno y el hidrógeno.

Se emplea el orden de electronegatividad propuesto por la IUPAC en el 2005, de modo que se coloca el elemento más electronegativo a la derecha y el más electropositivo a la izquierda y se empiezan a nombrar siempre de derecha a izquierda.

A la hora de nombrar los compuestos hay que tener especial cuidado con los compuestos que contengan las siguientes especies químicas:

 O^{2-} Ion óxido(2-).

O₂²⁻ Ion peróxido.

H- Ion hidruro.

H⁺ Ion hidrógeno(1+).

OH- Ion hidróxido.

Dos nomenclaturas son siempre posibles para TODOS los compuestos binarios en general:

A. ESTEQUIOMÉTRICA CON PREFIJOS MULTIPLICADORES

Usa prefijos a la hora de determinar el número de átomos distintos que existen en el compuesto, para indicar la composición precisa de cada compuesto.

Prefijo-Nombre del electronegativo-URO +DE+ prefijo-Nombre del electropositivo

(El de la derecha)

(El de la izquierda)

B. ESTEQUIOMÉTRICA CON LA NOTACIÓN DE STOCK

NO usa prefijos a la hora de determinar el número de átomos distintos que existen en el compuesto, luego emplea números romanos entre paréntesis

para indicar el número de oxidación del elemento electropositivo (el de la izquierda en la fórmula).

Nombre del electronegativo-URO +DE+ Nombre del electropositivo(*)

(El de la derecha)

(El de la izquierda)

Siendo (*): el número de oxidación en números romanos, entre paréntesis.

COMPUESTO BINARIO	ESTEQUIOMÉTRICA CON PREFIJOS MULTIPLICADORES	ESTEQUIOMÉTRICA CON LA NOTACIÓN DE STOCK
SrCl ₂	Dicloruro de estroncio	Cloruro de estroncio
Al ₂ S ₃	Trisulfuro de dialuminio	Sulfuro de aluminio
Cu ₂ Se	Seleniuro de dicobre	Seleniuro de cobre(I)
MgF ₂	Difluoruro de magnesio	Fluoruro de magnesio
HgBr	Bromuro de mercurio	Bromuro de mercurio(I)
Sr ₃ P ₂	Difosfuro de triestroncio	Fosfuro de estroncio
PCl ₃	Tricloruro de fósforo	Cloruro de fósforo(III)
BrF ₅	Pentafluoruro de bromo	Fluoruro de bromo(IV)
As ₂ Se ₃	Triseleniuro de diarsénico	Seleniuro de arsénico(III)
Si ₃ N ₄	Tetranitruro de trisilicio	Nitruro de silicio(IV)

3. ÓXIDOS

Son combinaciones binarias de un metal ó un no metal con el oxígeno, en las que el oxígeno tiene número de oxidación –2.

Se nombra con las palabras "óxido de" y el nombre del metal seguido inmediatamente del número de oxidación con el que actúa entre paréntesis y con números romanos. Si el número de oxidación del metal es fijo no es necesario especificarlo.

Óxido de METAL(N)

La IUPAC también acepta la nomenclatura estequiométrica para estos óxidos, aunque es preferible emplear la nomenclatura de Stock siempre que haya átomos metálicos y la estequiométrica cuando los átomos sean todos no metales.

ÓXIDO	ESTEQUIOMÉTRICA CON PREFIJOS MULTIPLICADORES	ESTEQUIOMÉTRICA CON LA NOTACIÓN DE STOCK
Co ₂ O ₃	Trióxido de dicobalto	Óxido de cobalto(III)
Hg ₂ O	Óxido de dimercurio	Óxido de mercurio(I)
NiO	Óxido de niquel	Óxido de níquel(II)
P ₂ O ₅	Pentaóxido de difosforo	Óxido de fosforo(V)
SnO	Óxido de estaño	Óxido de estaño(II)
As ₂ O ₃	Trióxido de diarsénico	Óxido de de arsénico(III)
B ₂ O ₃	Trióxido de diboro	Óxido de boro
I ₂ O ₇	Heptaóxido de diyodo	Óxido de yodo(VII)
CO ₂	Dióxido de carbono	Óxido de carbono(IV)
O ₇ Cl ₂	Dicloruro de heptaoxígeno	(b)

*La IUPAC desaconseja usar el prefijo "mono", salvo en el caso de que estemos enumerando o distinguiendo entre varios compuestos similares (**NO**: monoóxido de nitrógeno, **NO**₂: dióxido de nitrógeno). Ej.: NiS sería "sulfuro de níquel". En el caso del oxígeno puede nombrarse "monóxido" o "monoóxido".

(b) Según recomienda la IUPAC actualmente, cuando el oxígeno se combina con un elemento del grupo 17 (F, Cl, Br, I), se coloca primero el oxígeno y luego el elemento a la derecha. Sin embargo, el oxígeno actuará con su nº ox. negativo (-2) y el otro elemento con uno de sus números de oxidación positivos (+1, +3, +5 ó +7). No obstante, esta forma no está muy extendida, y es muy probable que nos encontremos el oxígeno al final, como en el resto de los óxidos, y se nombraría como hemos visto: Cl₂O₇: heptaóxido de dicloro, óxido de cloro(VII).

4. PERÓXIDOS

Ciertos óxidos presentan oxígenos unidos entre sí mediante un enlace simple (-O-O-), como el agua oxigenada o peróxido de hidrógeno H_2O_2 (H-O-O-H). El ion dióxido(2-) o ion peróxido, O_2^{2-} , forma peróxidos con elementos de los grupos 1, 2, 11 y 12.

El oxígeno en estos compuestos presenta número de oxidación –1.

Como los elementos de los grupos 1, 2, 11 y 12 tienen casi todos número de oxidación fijo, y debemos de conocerlo, no hay confusión con los óxidos del ion 6xido(2-), 0^{2-} .

PERÓXIDO	ESTEQUIOMÉTRICA CON LA NOTACIÓN DE STOCK	ESTEQUIOMÉTRICA CON PREFIJOS MULTIPLICADORES
Na ₂ O ₂	Peróxido de sodio	Dióxido de disodio
K ₂ O ₂	Peróxido de potasio	Dióxido de dipotasio
MgO ₂	Peróxido de magnesio	Dióxido de magnesio
CaO ₂	Peróxido de calcio	Dióxido de calcio
Cu ₂ O ₂	Peróxido de cobre(I)	Dióxido de dicobre
ZnO ₂	Peróxido de cinc	Dióxido de cinc
H ₂ O ₂	Peróxido de hidrógeno	Dióxido de dihidrógeno

5. HIDRÓXIDOS

Son compuestos ternarios que contienen un elemento metálico y tantas agrupaciones OH (hidróxido) como el número de oxidación que manifieste el metal. Con más propiedad se podrían definir como combinaciones entre cationes metálicos y aniones OH-.

Según la nomenclatura de Stock se nombran con las palabras "hidróxido de" seguido del nombre del metal y entre paréntesis el número de oxidación, en números romanos, en el caso de que tenga más de uno.

Hidróxido de METAL(N)

HIDRÓXIDO	ESTEQUIOMÉTRICA CON LA NOTACIÓN DE STOCK	ESTEQUIOMÉTRICA CON PREFIJOS MULTIPLICADORES
LiOH	Hidróxido de litio	Hidróxido de litio
NaOH	Hidróxido de sodio	Hidróxido de sodio
Ba(OH) ₂	Hidróxido de bario	Dihidróxido de bario
Fe(OH) ₃	Hidróxido de hierro(III)	Trihidróxido de hierro
Cr(OH)₃	Hidróxido de cromo(III)	Trihidróxido de cromo
Al(OH) ₃	Hidróxido de aluminio	Trihidróxido de aluminio

Si solo hay un grupo hidróxido, no se emplean paréntesis en su fórmula.

6. HIDRUROS METÁLICOS

Son combinaciones binarias del **hidrógeno** con los **metales**, en las que el H tiene número de oxidación -1.

Se nombran con las palabras "hidruro de" y el nombre del metal. El número de hidrógenos coincide con el número de oxidación del metal.

Hidruro de METAL(N)

HIDRURO METÁLICO	ESTEQUIOMÉTRICA CON LA NOTACIÓN DE STOCK	ESTEQUIOMÉTRICA CON PREFIJOS MULTIPLICADORES
LiH	Hidruro de litio	Hidruro de litio
CaH ₂	Hidruro de calcio	Dihidruro de calcio
AlH ₃	Hidruro de aluminio	Trihidruro de aluminio
GeH ₄	Hidruro de germanio(IV)	Tetrahidruro de germanio
PbH ₂	Hidruro de plomo(II)	Dihidruro de plomo
PbH ₄	Hidruro de plomo(IV)	Tetrahidruro de plomo

7. HIDRÁCIDOS

Son combinaciones del hidrógeno con los Calcógenos (grupo 16) y los Halógenos (grupo 17).

El hidrógeno actúa con número de oxidación +1, y son los únicos compuestos binarios de hidrógeno donde el hidrógeno se formula a la izquierda.

Dentro de este grupo también podemos formular el HCN que presenta un hidrógeno ácido unido al grupo cianuro que contiene un triple enlace. Se nombra como cianuro de hidrógeno, pero en disolución será ácido cianhídrico.

Se nombra el no metal terminado en "-uro" seguido de "de" y la palabra "hidrógeno". También se pueden nombran con la raíz del elemento que acompaña al hidrógeno y el sufijo -ano.

NOMETAL-uro de hidrógeno

Estos compuestos se denomínan hidrácidos por la propiedad de que al disolverlos en agua dan disoluciones ácidas, es decir, ceden hidrógeno con facilidad. Se hace notar esta circunstancia con el subíndice (aq) que indica disolución acuosa.

En este caso se nombra con la palabra "ácido" y el nombre del no metal terminado en -hídrico.

Ácido NOMETAL-hídrico

		SOLO EN	NOMBRE EN
HIDRÁCIDO	NOMBRE SISTEMÁTICO	DISOLUCIÓN	,
		ACUOSA	ACUOSA

HF	Fluoruro de hidrógeno o fluorano	HF(aq)	Ácido fluorhídrico
HCI	Cloruro de hidrógeno o clorano	HCI(aq)	Ácido clorhídrico
HBr	Bromuro de hidrógeno o bromano	HBr(aq)	Ácido bromhídrico
НІ	Yoduro de hidrógeno o yodano	HI(aq)	Ácido yodhídrico
H₂S	Sulfuro de hidrógeno o sulfano	H ₂ S(aq)	Ácido sulfhídrico
H₂Se	Seleniuro de hidrógeno o selano	H₂Se(aq)	Ácido selenhídrico
H ₂ Te	Telururo de hidrógeno o telano	H ₂ Te(aq)	Ácido telurhídrico
HCN	Cianuro de hidrógeno	HCN(aq)	Ácido cianhídrico

8. HIDRÓGENO CON NO METAL

Son combinaciones del hidrógeno con los elementos de los grupos 13, 14 y 15.

La raíz del nombre nos indica el elemento que acompaña al hidrógeno. El número de H será 3 para los elementos del grupo13 (B y siguientes), 4 para los elementos del grupo 14 (C y siguientes), y 3 para los elementos del grupo 15 (N y siguientes). Si el elemento que acompaña al H se repite debemos conocer la estructura del compuesto, por eso es conveniente poner entre paréntesis el número de hidrógenos.

	NOMBRE SISTEMÁTICO	NOMBRE COMÚN
NH ₃	Azano ^a	Amoníaco
N ₂ H ₄	Diazano	Hidrazina
PH ₃	Fosfano	Fosfina

P ₂ H ₄	Difosfano	Difosfina
AsH ₃	Arsano	Arsina
SbH₃	Estibano	Estibina
CH ₄	Metano ^b	Metano
SiH ₄	Silano	
BH ₃	Borano	